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Closed-form and finite-element solutions are presented for thermal bend-

ing and stretching of laminated composite plates. The material of each layer
is assumed to be elastically and thermgelastically orthotropic and bimodular,
i.e., having different properties depending upon whether the fiber-direction
normal strain is tensile or compressive. The formulations are based on the
thermoe]éstic version of the Whitney-Pagano laminated plate theory, which in-
cludes thickness shear deformations. Numerical results are obtained for de- ;
fles;jons and neufra1-surface positions associated with normal strains in both
of the in-plane coordinates. The closed-form and finite-element results are

found to be in good agreement. ‘Jii

1 INTRODUCTION

As the use of figgr—reinforced composite materials becomes more wide-

spread, there is ever increasing interest in predicting the thermostructural
behavior of plates constructed of such materials. One of the interesting
characteristics of certain fiber-reinforced composite materials is that they
exhibit quite different elastic properties when 1oaded along the fiber direc-

tion in tension as opposed to compression. This was observed experimentally
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for cord-rubber composites by Clark (1)*and Patel et al. (2). ae first

attempt to formulate a theory of elastic behavior of such materials was made

by Ambartsumyan (3), and a comprehensive theory consistent with experimental

results was presented in (4).

Although there have been a number of thermoelastic analyses of bimodulus-

material plates (5-9), they have all been limited to isotropic bimodulus

materials and temperature changes symmetric about the midplane of the plate.

The present work is more general than any existing analyses known to the

authors in four different respects:

1.
2.

The material of each layer is elastically orthotropic and bimodular.
The material of each layer is thermoelastically orthotropic and bi-
modular, as shown to be possible physically in a recent micromechanics
analysis (10).

Both single-layer orthotropic and cross-ply laminated plate con-
structions are considered.

Transverse shear deformation is included.

Temperature changes through the thickness as well as in the plane

are considered.

2 GOVERNING EQUATIONS

The equations developed here constitute the thermoelastic extension of the

Whitney-Pagano shear-flexible laminated plate theory (11).

The origin of .a Cartesian coordinate system is taken to be in the mid-

~ plane (xy plane) of the plate with the z axis being normal to this plane and

directed downward.

The thermoelastic constitutive relations for each layer (2) are taken to

¥ References are given in Appendix A.




be orthotropic and bimodular as follows:

%% Uike Qoke O €  %1kgt
9y * | Qzke Qazgy O €y = SapgT (1)
Txy 0 0 Qgee Ixy
Tyz Cowge 0 Yy2
. . 0 (2)
xz 5502 Yxz

Here 9y and ay are in-plane normal stresses, Ty is in-plane shear stress,

T are transverse shear stresses, ¢, and ¢ are in-plane normal

yz z X Y
strains, Ty is in-plane engineering shear strain, Yyz and Y, 2re transverse

and tx

engineering shear strains, T is temperature change measured from the strain-
free temperature, the C's are Cauchy elastic shear stiffnesses, the Q's are
plane-stress reduced stiffnesses, and the a's are thermal-expansion coeffi-

cients. The third subscript in Qijkz and cijkn (and second in a., . ) refers to

ke
the bimodular characteristics: k=1 denotes properties associated with fiber-

! direction tension, k=2 denotes fiber-direction compression, and k=0 signifies

i that the property does not depend upon fiber-direction strain. Also, sub-

script o refers to the layer number, i.e., 2=1 and 2 for a two-layer laminate.
; The stress resultants and stress couples and thermal stress resultants
and couples are defined in the standard manner, i.e.,

Ih/Z
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(N MT)'-'Ih/Z (0000, +Q,pp0.,,)(1,2)T dz (3)
x*7x -h/2 11ke 1k 12ke 2ke’* °?

T T h/2
(RysMy) = J-h/z (Q2ke%1ke * Qoakg®ake) (1+2)T d2
where h is the total laminate thickness.

The displacements u,v,w in directions x,y,z at an arbitrary location

(x,y,z) are given by

u(xy,2) = u%xy) + 2z, (x,y)
v(xsy,2) = vO(x,y) + 20, (%,y) (4)
w(x,¥,2) = wo(x,y)

0

Here u°,v°,w are the displacements at the midplane, and‘wx and ¢, are the

bending slopes. !
Substituting equations (4) into the well-known linear strain-displacement

relations of elasticity theory in Cartesian coordinates, and then using

equations (1) and (2) in equations (3), one obtains the thermoelastic con-

stitutive relations for the laminate as follows:
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Ny 0 0 Ags 0 0  Bgg/h v?x-+u?y

P L 9 > (5)
(M, +M)/h -811/h Byp/h O Dy;/h? Dyp/h2 O .
(m+@Vh Bia/h Baa/h O  Dyp/h? Dyp/h2 0 hwy

2
L Mxy/h ) i 0 0 Bss/h 0 0 Bes/hd { hwy.’x +h X»¥ )




o e St o et 7 ot i o -

0
+
Q, Swe O Wy twy
. . (6)

Here a comma denotes differentiation, i.e., ( ),x za( )lax.

As usual, the stretching, bending-stretching coupling, bending and trans-

verse shear stiffnesses for the laminate are defined as

h/2

where K§ is the transverse shear coefficient to provide for the nonuniform
transverse-shear strain distribution through the thickness (12).
Neglecting distributed forces, body moments, and inertial effects, one

can write the equations of equilibrium as

N + N

xox T My,y 20 5 Nyt Ny 0 5 Q

xox ¥ Qy,y =0
(8)
M +M

X X x_y,,y"Qso;M

+ - =
X XY X MY:Y Qy 0

Substituting equations (5) and (6) into equations (8), one obtains the
following coupled thermoelastic equilibrium equations in terms of the

generalized displacements:
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where [Lkz] is a symmetrix linear differential operator matrix with the

following elements:

. 2 2 .
L1 = Apdy + Agedy L2s = L1s
- B} 2 2
Liz = (A2 + Age) d,d, L3z = - Sssdy - Suudy
Li3=0 L3y = - Suudy
Lis = (B12 + Beg) d,d, L3s = - Sssd,
(10)
. 2 _ 2 2
Lis = Blldi * Bged, Luy = Dgedy + D22d, = Suy
2 2 N
L2z = Aged, * Az2dy Lys = (D12 + Dgg) d,d,
- . 2 2
L23 = 0 Lss = D11d, * Deed, - Sss
Lzy = Bggd> + By,d? d, = 3/ox
24 = 66 X 22 y X = ¢

Except for the presence of the generalized thermal-force terms appearing
on the right side and the absence of mechanical pressure, equations (9) are

identical to those presented recently in (13).

3 CLOSED-FORM SOLUTION

Guided by the closed-form solution presented in (13) for a freely
supported, laminated, bimodulus, rectangular plate subjected to a sinusoidally
distributed normal pressure, we consider here the same class of plate and
geometry but subjected to sinusoidal distributions of midplane temperature and
temperature gradient through the thickness. Thus, the temperature distribution
is given by .

T(x,y,2) = To(x,y) + (2/h)T1(x,y) (M)

where, here




To ® To sin ax sin 8y, T; = T, sin ax sin gy

a=*vx/a, B=un/b

and a and b are the lengths of the plate sides parallel to the x and y axes,
respectively.

The boundary conditions are freely supported, i.e., simply supported
flexurally and unrestrained in the in-plane directions normal to the edges.

Along the edges located at x=0 and x=a:

= 08 =2 =
Nx v WM wy 0 (13)

Along the edges located at y=0 and y=b:

0 = = = = = ’
ul =N =W My =0 (14)

For the temperature distribution and boundary conditions spécified above,
the governing-equations are satisfied exactly in closed form by the following
distributions of generalized displacements:

u® = U cos ax sin gy
v® = V sin aX C0S By

w =W sin ax sin gy (15)
hwy = Y sin ax cos gy
hwx = X COS ax cos gy

The values of the coefficients U,V,W,Y, and X are obtained by solving the
following Tinear matrix equation aobtained by substituting solutions (15) into

governing equations (9):

(12)
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where [Ckz] is a symmetric matrix containing the following elements:

Ci1 = - Ajja? - AggB? C2s = Cyy i
Ciz2 = - (A2 + AgglaB C33 = - Sssa? - Suu82
Ci13=0 Ciu = = Syu8
Ciy = = (B12 + BgglaB C3s = - Sssa?
(17)
Cis = - Byja? - Bggh? Cuy = - Dgga? - Dz282 - Sy
C22 = - Agga? - Ajz8? Cys = - (Dy2 + Dgglad |
C23 =0 Cs5 = - Dyja? - DggB2 - Sss
Cay = - BggaZ - ByaB2
and the quantities on the right side are defined by
T W7 . T T .
Nx,x Nx’x/cos ax sin gy Y Ny,y/s1n aX CO0S By
(18)
T - T .M
ﬁx,x Mx’x/cos ax sin By ﬂy,y My’y/sin ax €O0S By
Even in the case of a single-layer plate of bimodulus material as con-
sidered in (14), the plate stiffnesses Aij’ Bij’ and Dij depend upon the i

neutral-surface position (denoted by zn) associated with the fiber-direction

strain. In the case of a cross-ply plate, as considered in (13), these




stiffnesses depend upon both 2.« (in the layer oriented in the x direction)
and z,, {in the other layer, which is oriented in the y direction). It is

noted that the transverse shear stiffnesses are unaffected by 2.y and zny'

To determine the neutral-surface location, we use the kinematics of

deformation, i.e.,

0 0

¢, =0= U,x + 2y

x ;sy=0=v

XX Y
Then, using equations (15), we obtain

3-0 == -
Znx u’x/d'x.x hu/X

(20)

3-0 S -
Zay =7 Vaylbyy = - VY

In the present thermoelastic case, not only the Aij’ Bij’ and Dij stiff-

nesses depend upon 20y dnd 2,0 but also do the generalized thermal forces

Yy
N§ and M:. The detailed form of these dependences are a function of the

nature of the signs of Z.y and z,

y; they are developed for various possible

cases in Appendix B.

In principle, one could develop a set of explicit relations for deter-
mining Z and zny. However, the extreme complexity of the algebraic struc-
ture of the resulting equation renders this approach impractical. Thus, an
iterative procedure analogous to that used in (12,13) for mechanical loading
is adopted here. The procedure turns out to be computationally quite

efficient.

4 FINITE-ELEMENT FORMULATION
As pointed out in the previous section, an exact closed-form solution
to equations (9) can be obtained only under special conditions of geometry,

edge conditions, loadings, and lamination. Here we present a simple finite~

Wy (19)




element formulation which does not have any limitations (except for those
implied in the formulation of the governing equations)(15,16).

Suppose that the region R is subdivided into a finite number N
of subregions: finite elements, R, (e=1,2,...,N). Over each element the

generalized displacements (u .w,wx.wy) are interpolated according to

0*Vo
r

1 1
ul =g ujo; oV
i

S
0= Vit s w=1w
1 i

- g

i
(21)
_ p 3 _P
wx = ? Bxi¢i s Y, = ; Byi¢
i
where ¢? («=1,2,3) is the interpolation function corresponding to the i-th
node in the element. Note that the in-plane displacements, the transverse
displacement, and the slope functions are approximated by different sets of

interpolation functions. While this generality is included in the formu-

lation (to indicate the fact that such independent approximations are possible),
we dispense with it in the interest of simplicity when the element is actually
programmed and take ¢§ = ¢§ = ¢: (r=s=p). Here r,s, and p denote the number
of degrees of freedom for each variable. That is, the total number of degrees
of freedom per element is 2r + s + 2p.

Substituting equation (21) into the Galerkin integrals associated with

the operator equation (9), which must also hold in each e1ement'Re,

J ([LIE6} - (F}){s}dxdy = 0 (22)
Re

and using integration by parts once (to distribute the differentiation equally

between the terms in each expression), we obtain




[KITILKI2IKIAICKIICKEST | [ (u®) ((F1))
(k22][Kk23](Kk2*][K25] (v {F2}y
[k333rke3rkasy | dw®> = { (Frhrp (23)
Symmetric  [K¥*][KS] {y} (F4}
| 351 fe Wuybe  LIFPY),

where the {u°}, {v°},etc. denote the columns of the nodal values of u°, v°,

respectively, and the elements K a8 (0,821,2,...,5) of the symmetric stiffness

E matrix and F‘; of the force vector are given by
11 = X Y 25 =
12 = " 33 = X y
K13 = 14 5 . pXO
] K‘IJ 0 : Ki iJ SSSR'U . I
1y = ' 35 o yo
k1S = Bulyy + Beohyy Kij = Swihy; (24)
‘ KIS = B1aHYY + BooH’Y Kis = 01 T%, + DggT¥. + Sg5T°
: ij 12 €6 ij 11045 86'4j $5%4j
= Y - X
KEZ = Agg6yy + Asee ij K‘i‘g = 01273 XY+ DssTJ.{
3 23 a - X Y o
g Kl =0 K§3 = DesTyy * DaaTd; + SuuT{;
‘ K34 = BSGH + By Xy
1 J
1, T.1 4 o T 3
Fi JR Nx"‘i,x dx dy FI Rx 1sX dx dy
( er 1 ¢ 3
2 5 T
=2 d =
] o JR N‘y i,y 9 dy Fy JRMyq’i,y dx dy (25) |
; e e |
F, =0




11 .
R ¢i,£¢j,n dx dy (1,§21,2,...,1)
e
1 . . iz
2 ¢i,£¢j,n dx dy (i=1,2,...5r 3 §=1,2,...,t)
e
1 2 . . s
R i.E¢j.n dx dy (i=1,2,...,r 5 j=1,2,...,8)
e
82 05 dx dy (1,3=1,2,...,s) (26)
R 1,7 Jsn
e
2 .3 . . is
R ¢i.g¢j,n dx dy (i=1,2,...,5 3 j=1,2,...,t)
e
3 .3 .
R ¢is5¢j,ﬂ dx d.y (79.]"1:2!---95)
e

(g,n=0,x,y)

XX _ X
and Gij Gij’ etc.
matrices in equation (26) coincide.

In the special case in which ¢§ = ¢§ = ¢:, all of the

In the present study, elements of the serendipity family are employed
with the same interpolation for all of the variables. The resulting stiffness
matrices are 20 by 20 for this four-node element and 40 by 40 for the eight-
node element. Reduced integration (17,18) must be used to evaluate the matrix
coefficients in equation (24). That is, if the four-node rectangular element
is used, the 1x1 Gauss rule must be used in place of the standard 2x2 Gauss
rule to numerically evaluate the coefficients Kij‘
Substituting solution (23) into equations (20), we get

e , (088 . e _ 4 08.¢@
Znx 4U’Q/wx,x ’ zny *V’Q/wy,y

12




5 NUMERICAL RESULTS

As a check on the validity of the equations and their computational
implementation, it is desirable to compare the present predictions with those
given in the literature for special cases. Apparently there is a dearth of
solutions of plates bent by a sinusoidally distributed thermal gradient. How-
ever, it was possible to compare with isotropic, thin plate results given by
Boley and Weiner (19) as listed in Table 1. As can be seen, the agreement is
qufte good.

As examples of orthotropic bimodulus materials, the same materials as
considered in (13,15) are used, namely, aramid-rubber and polyester-rubber.
The elastic properties, obtained from experimental results of (2) using the
data-reduction procedure presented in (4), are listed in Table 2. Unfortunately
there are no measured values available for the thermal-expansion coefficients
of these materials. However, the micromechanics analysis of bimodular aﬁtion
presented in (10) suggests that the thermal-expansion coefficients of these
materials should also depend upon the sign of the fiber-direction strain. Thus,
for the numerical calculations presented here, it is assumed that the following
relationships hold:

av/al = 0.5 5 ab/aS = 1.0 ; at/af = 0.1

Numerical results are presented'for relatively thick plates (b/h=10)
with a temperature distribution having a temperature gradient through the
thickness but no mean temperature change, i.e., foso. Table 3 gives results
for single-layer orthotropic plates of various aspect ratios.

As can be seen, there is good agreement between both dimensionless de-

flections and neutral-surface locations as predicted by the finite-element

13
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and closed-form solutions. In fact, the largest difference appearing in the

table are 0.15% for W, 0.18 for Zx, and 1.3% for Zy.
Table 4 shows the finite-element and closed-form solutions for dimension-
less deflections and neutral-surface locations of two-layer cross-ply (0°/90°)

simply-supported rectangular plates subjected to sinusoidal thermal loading.

The finite-element results are in close agreement with the closed-form results.

It should be mentioned that composite materials typically have much lower
ratios of thickness shear moduli to in-plane Young's moduli than homogeneous,
isotropic materials (G/E = 1/3 to 1/2). In contrast, aramid-rubber has
ze/Ex = 0.001 when the fiber-direction strain is tensile, but 0.416 for com-
pressive fiber-direction strain.

Figure 1 presents the influence of the aspect ratio and side-to-thickness
ratio for single-layer and two-layer cross-ply plates under sinusoidal thermal
loading (material: polyester-rubber). The effect of thickness on the deflec-
tion is more pronounced than the effect of the aspect ratio.

Figures 2 and 3 show the effect of the aspect ratio (a/b) and side-to-
thickness ratio (b/t), respectively, on the location of neutral surfaces for
a single-layer, orthotropic, bimodulus, simply supported rectangular plates
under sinusoidal thermal loading (material: aramid-rubber, To=0.0, T,=1.0).

Similar results are presented in Figures 4 and 5 for a two-layer cross-
ply (0°/90°), rectangular plate of polyester-rubber under sinusoidal thermal
loading. Note from Figure 5 that the neutral-surface locations are virtually

unchanged for side-to-thickness ratio greater than 25.

14
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6 CONCLUSIONS

On the basis of the excellent comparisons with existing results for homo-
geneous-material plates and the comparisons with a closed-form solution for
Taminated bimodulus composite-material piates, the mixed finite element for

thick plates as presented here is considered to be validated.
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APPENDIX B
DERIVATION OF EXPRESSIONS FOR THERMAL FORCES AND MOMENTS

Case I

For Case [, LI 0 and z. < 0 with Z . governing layer 1 (0°) and 2,

X Y

Y
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layer 2 (90°).
z

T ny , 0
Ny = I-m("nzz 122" Q222 %2217 *,(z Qg onz* gz o217 &
i (8-1)
nx h/2
+ Jo Q121 9121 * Q1 399)7 d“jz Q117 o1 * Qaqq a7 2
nx
Let

Q122 *122* Q222 %222) * 8122+ (U112 9372* Qa12 3212) = 11 52
B-2

Q21 2121 * Q221 9221) = 8121 > (Quuaq 9191+ Qany appq) = 8ypp o ete.
Then,
i |
N = [B122 Tolzqy + 1/2) + 814, To(0-2, ) + 815 Ty(z,, - 0)
+ By Tol/2-z ) + 3122(T]/2H)(zf,y-h2/4)
+ gm(rl,/zh)(o-z:y) + s]ZI(T]/Zh)(z;‘:x-O) .
+ 3]]](T1/2h)(h2/4-z:x)]sin ax sin By
or
T 2
Ny = [(8y20 % 8170 (Tgh/2) + (8150 = 811q) tzp * (8155 847,) ToZny

2 /2n) (B-3)

* (8177 - 812)(Ty1/8) + (815 = 819 )(T 22,

¥ (3122' 5112)(le:y/2h)]sin ax sin gy

Similarly,




T' - -
Ny = [Bagp * 81y )(Tgh/2) + (855 - Bo1q) EoZny * (Bagp ™ B212) ToZny

+ (32'“ - 8222)(T]h/8) + (522] - 32]])(T1Z’2‘x/2h) + (5222' 52]2) (B-4)
(T]Z /2h)]sin ax sin gy

Now,

0 Znx h/2
B112 Tz dz + J Bi21 T2 dz + 81 Tz dz

ny 0 Znx

. 2
M= [ g Tz

-h/2 b3

[(8yq7 - 8122) (Toh™/8) + (8157 = 8199) (T2 /2) + (8129 8y1) (Te20, /2)

(B-5)

+ (3122 + 3111)” h /24) + (3121 -3”])(1' /3h)

1%nx

3
*+ (8122 8112)(T1Zny/3h)]sin ax sin gy
Similarly,

= [(Byyq - 825p) (Toh?/8) + (Bg) = 81y (ToZp, /2) + (8gpp = By1p) (27 /2)

+ (899 * By (T(1%/28) + (85) - 8y77)(Ty2,,/3) (8-6)

+ (3222 82]2)(T] n."/3h)]5‘in ax €cos By

Using the above equations in conjunction with equations (12) and (18), we

obtain the following:

T .
Reox = ol(B1ag + 819 )(Th/2) + (8151 = 8199 )T 2, + (8155 - 81920702,

1 nx

+ (3122 31‘2)(T /2h)]

1%ny




IAL TN Lo

o7
Ne,y

ﬁT

X)X

M
Yy

= G[(B*n] 3]22)(T h /8) + (512] B-In)(T

= 8l(8yp, + 857y )(Th/2) + (3221 8110 ToZnx * (B2~ 82120720y

+ (BZ]] ’3222)(T h/8) + (322] 32]])(T /Zh) (8‘8)

1%nx

* (8299 = 817) (Ty 7 /20)]

oZax/2) + (8157 8112)

(t.z

o ny/z) + (3122 + Bn])(T h /24) + (B]z] B]”)(T]Z /3h) (8-9)

* (8129 = B132)(Ty2g,/30)]

= 80(8yy) - 8229) (Th*/8) + (8357 = 811) (T2 2) + (850 - 8212)(Tozny/2) (8-10)

* (8329 * 811) (Tyh/28) + (897 = 87) (Ty 20, /30) + (855 = 81) (Ty 2, /3M)]

In a similar way, one can obtain the expressions for the above-mentioned

quantities for the remaining'seQen cases as follows:

Case [I (znx>0, z. >0)

XX

NT

Yy

XeX

Yy

ny .

= al(8yp5 *+ 8197)(Tgh72) + (895 - 8931)(T2,)

* (81177 8122)(TyW/8) + 81y - 8y7) (g2, /2m)]

= 8ll8p *+ 8211 ) (T2 + (851 - 8517) (T2,

+ (32” 3222)(T h/8) + (322] 52”)(f /2h)]

1%nx
(8-11)

= 0[(31”'3122)(T hz/a) + (3121 ‘3”1)(f Z /2)

0 nx

+ (8122 + B]]])(T h /24) + (B]z] s]]])(r /3h)]

1%nx

= 3[(32” - 3222)(T h /8) + (5221 - an)(foznx/z)

+ (3222 an)(T h /24) + (3221 321])(T /3n)]

1%nx

19
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Case III (znx<0, zny>0)

Ny x = al(8y50 + 8111 (Tgh/2) + (815 - 8y97) (T2 )

+ (3122' 3112)(T z ) + (B]]]' 8122)(T h/8)
| + (812~ 8111 Tz /20) + (8150 8y7) (Ty27,/2h)]
=T -
Ny,y = 88200 + 8217)(Tgh/2) + (8p; - B1y)(Tg2)

+ (Bagp = B212) (ToZny) + (817 - Bypp) (Ty1/8)

+ (8957 - 897)(T12,,/20) + (8299 - 815) (T25,/20)]
Fy, = al(817) = B129) (Toh?/8) + (815 - 8yqq) (Ty2h /2)

* (81227 81712 (ToZpe/2) * (829 + Byy))(Tyh*/24)

+ (817 - 1), 23,/3h) + (899 = 8115) (Ty29,/30)]
T 2
fy,y = (08011~ 8500) (Tgh™/8) + (8999 - 871) (T2 /2)

+ (8299~ 8212) (T2 ax/2) + (Bypp * 817 (T4 h’/24)

(322] 32]])(T] ny/3h) + (3222 32]2)(T]Z /3h)]

Case IV (znx<0, zny<0)

ﬁ:,x = al(8y55 + By} (Tgh/2) + (8155~ B1)) (T2 ny) J

+ (Byyq - By22) (Fy1/8) + (81,5 - 8159 (1425, /20)] ‘

1%ny

+ (82]]‘ 3222)(T h/8) + (3222' 822])(T /Zh)]

1%ny
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T 2 . 2
M = allByyy = Bypp) (Th°/8) + (8155 - 810 ) (152, /2)

* (8107 + 877) (Tyh2/28) + (8125 = 817) (Ty25/30)]
ﬁ;’; = B[(Bz]]‘ 3222)(T°h2/8) + (3222- 322])(T°z:y/2)

2 3
+ (Bgp * 811 (h*/28) + (895 = 8551} (T2, /30)]
For neutral surface going out of plane,

Case V (znx>0.5, z, <-0.5)

y
nl,x = al(8y + 8q72) (Tg/2) + (8157 = 8179)(T/8)]

My, = all8yg) - 81120 (To/8) + (815 + 830 (Ty/24)]

ﬂ;’y = 8l(8p - 3212)(T°/8) + (Byoy * 3212)(71/24)1

Case VI (znx<‘°'5’ zny>0.5)

Ay, = ol(8151 - 8112)(To/8) + (8197 + 8y9p)(T/20)]

M),y = 8l0ag01 = 822) (T5/8) + (835 * 855)(T1/24)]

Case VII (znx>°'5’ zny>0.5)

NI,x = al(8yqq + 817)(Tg/2) + (8799 - 819,)(F/8)]

ﬁ;.y = 8l(8yy; + 8212)(1/2) * (8yyq = 872)(Ty/8)]

T
nx.x

n;’y s 5[(521‘ '5212)”0/8) + (52” + 3212)(71/24)]

= al(8ygy = 8172)(To/8) + (8yy; * 8y32)(T,/24)]

21
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(8-14)

(B-15)

(8-16)




My x = ol(gyp + 8122) (To/2) + (875 - 85,)(T,/8)]

=T -

ﬁ;.y = 8181 = B200) (T4/8) + (855, + 8,,,)(T,/28)]

For a single layer, change 8112 to B11y°

Ba2p 0 By

22

vy = BL(Ba01 * 830)(T3/2) + (8, = 8,,,) (T, /8)]

(8-17)




Table 1 Comparison with Boley and Weiner's Results [17] for an Isotropic
Single-Layer Thin Rectangular Plate at Different Aspect Ratios

(E;11/E22 = 1.00 , v33 = v3; = 0.3 , b/h = 10)

Aspect Deflection, W/h (m=n=1)

Ratio,

a/b Boley and Weiner Present
0.5 0.5300 0.5264
1.0 6.5858 6.5789
1.5 6.3112 6.3063

] 2.0 2.1104 2.1058

Table 2 Elastic Properties for Two Tire-Cord/Rubber, Unidirectional, Bimodulus
Composite Materials®

k . Aramid-Rubber  Polyester-Rubber
Property and Units k=1 k=2 k=1 k=2

s Longitudinal Young's modulus, GPa 3.58  0.0120 0.617  0.0369

4 Transverse Young's modulus, GPa 0.00909 0.0120 0.00800 0.0106
Major Poisson's ratio, dimgnsipnlessb 0.416 0.205 0.475 0.185
Longitudinal-transverse shear modulus, GPa® 0.00370 0.00370 0.00262 0.00267
Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475

E 2fiber-direction tension is denoted by k=1, and fiber-direction compression

, by k=2.

J bIt is assumed that the minor Poisson's ratio is given by the reciprocal

1 relation.

°It is assumed that the longitudinal-thickness shear modulus is equal to this
one.




Table 3 Neutral-Surface Positions and Dimensionless Deflections for Rectangular
Plates of Single-Layer 0° Aramid-Rubber and Polyester Rubber Determined
by Two Different Methods (b/h=10.0, T,=1.0, T4=0.0)

Aspect

Ratio s
a/b C.F.

ok

F.E.

*k

C.F.

*k

F.E.

*¥%

C.F.

%%

F.E.

Aramid-Rubber:

0.5 0.03478 0.03486 0.03059 0.03059 0.2853 0.2807
0.75 0.08147 0.08159 0.04449 0.04441 0.2143 0.2120
1.0 0.1522 0.1523 0.06259 0.06259 0.1332 0.1323
1.25 0.2485 0.2485 0.07970 0.07968 0.07699 0.07699
1.50 0.3624 0.3624 0.08850 0.08849 0.04492 0.04482
1.75 0.4792 0.4790 0.08612 0.08612 0.02843 0.02838
2.0 0.5880 0.5876 0.07491 0.07491 0.01987 0.01986
Polyester-Rubber:
0.5 0.04815 0.04823 0.1031 0.1030 - 0.1851 0.1827
0.75 0.1157 0.1158 -~ 0.1184 0.1183 0.1068 0.1062
1.0 0.2160 0.2161 0.1308 0.1308 0.05299 0.05276
1.25 0.3410 0.3409 0.1360 0.1360 0.02552 0.02546
1.5 0.4737 0.4736 0.1332 0.1331 0.01285 0.01282
1.75 0.5975 0.5970 0.1234 0.1233 0.007329 0.007329
2.0 0.7024 0.7017 0.1078 0.1078 0.005110 0.005109

**E c wh/°57152 ’

s e A

.F. denotes closed-form solution; F.E. signifies finite-element solution




Table 4 Neutral-Surface Positions and Dimensionless Deflections for Rectangular
Plates of Two-Layer (0°/90°) Aramid-Rubber and Polyester-Rubber Under
Sinusoidal Thermal Loading, as Determined by Two Different Methods
(b/h = 10.0, T; = 1.0, T, = 0.0)

*

Aspect W Z, Zy

Ratio *% ol = * e F=
a/b C.F. F.E. C.F. F.E. C.F. F.E.

Aramid-Rubber: }

0.5 -- -- -- -- -- -
0.75 -- - -- - - -
1.0 0.1710 0.1710 0.1198 0.1198 0.03631 0.03463
1.25 0.2602 0.2584 0.1162 0.1162 0.03201 0.03056
1.5 0.3508 0.3492 0.1032 0.1032 0.02873 0.02758
1.75 0.4363 0.4348 0.08413 0.08363 0.02632 0.02523
2.0 0.5139 0.5126 0.06182 0.06161 0.02457 0.02341

4 Polyester-Rubber:

0.5 0.09281 0.08935 0.2599 0.2541 0.08784 0.08711
0.75 0.1990 0.1870 0.2554 0.2436 0.08367 0.08356
1.0 0.30%0 0.2958 0.2398 0.2294 0.07965 0.07916
1.25 0.3924 0.3816 0.2119 0.2035 0.07645 0.07630
1.5 0.4433 0.4358 0.1734 0.1679 0.07407 0.07311
1.75 0.4719 0.4662 0.1284 0.1252 0.07241 0.07000
2.0 0.4886 0.4833 0.08152 0.08041 0.07136 0.06786

* tT 2
**W = Wh/a)T1b
C.F. denotes closed-form solution; F.E. signifies finite-element solution
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Fig. 1 Transverse deflection vs. aspect ratio (a/b) and side-to-

thickness ratio (b/h) for single-layer and two-layer cross-
ply plates under sinusoidal thermal loading. (material:
polyester-rubber)
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Fig. 2 Neutral-surface location vs. aspect ratio for single-
layer (0°) rectangular plates under sinusoidal thermal

loading. (material: aramid-rubber, b/h = 10)
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Fig. 3 Neutral-surface location vs. side-to-thickness ratio for
single-layer square plates under sinusoidal thermai loading

(material: aramid-rubber)
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Fig. 4 Neutral-surface location vs. aspect ratio for two-layer
cross-ply (0°/90°) rectangular plates under sinusoidal
thermal loading (material: polyester-rubber, b/h = 10)
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Fig. § Neutral-surface location vs. side-to-thickness ratio for
two-layer cross-ply (0°/90°) square plates under sinusoidal .
thermal loading (material: polyester-rubber)
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